1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
| 朴素dijkstra算法 —— 模板题 AcWing 849 时间复杂是 O(n^2+m), n 表示点数,m 表示边数 int g[N][N]; int dist[N]; bool st[N];
int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0;
for (int i = 0; i < n - 1; i ++ ) { int t = -1; for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true; }
if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; } ------- 堆优化版dijkstra —— 模板题 AcWing 850 时间复杂度 O(mlogn), n 表示点数,m 表示边数 typedef pair<int, int> PII;
int n; int h[N], w[N], e[N], ne[N], idx; int dist[N]; bool st[N];
int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; priority_queue<PII, vector<PII>, greater<PII>> heap; heap.push({0, 1});
while (heap.size()) { auto t = heap.top(); heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue; if (ver == n) break; st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; heap.push({dist[j], j}); } } }
if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }
|